Peru's Great Depression: A Perfect Storm?

G. Llosa (Centrum) U. Panizza (The Graduate Institute, Geneva)

BCRP

September 2015

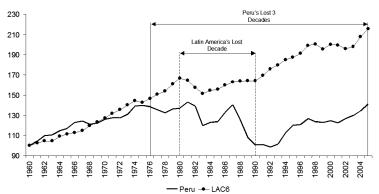
Introduction

■ Economic depressions are widely studied events, e.g. Kehoe and Prescott (2007)

Introduction

- Economic depressions are widely studied events, e.g. Kehoe and Prescott (2007)
- 70's and 80's: Peru went through a series of deep and long-lived economic crises.
 - 1 Rapid succession of crises, i.e. three times in a row
 - 2 GDP per capita grew 0% over a thirty year period: 1975-2005.

Introduction


- Economic depressions are widely studied events, e.g. Kehoe and Prescott (2007)
- 70's and 80's: Peru went through a series of **deep** and **long-lived** economic crises.
 - 1 Rapid succession of crises, i.e. three times in a row
 - 2 GDP per capita grew 0% over a thirty year period: 1975-2005.
- Literature shows that EM crises tend to be V-shaped, e.g. Calvo et. al. '06

Introduction

- Economic depressions are widely studied events, e.g. Kehoe and Prescott (2007)
- 70's and 80's: Peru went through a series of deep and long-lived economic crises.
 - Rapid succession of crises, i.e. three times in a row
 - 2 GDP per capita grew 0% over a thirty year period: 1975-2005.
- Literature shows that EM crises tend to be V-shaped, e.g. Calvo et. al. '06
- The recovery from Peru's collapse took 15 years, clearly not V-shaped

While Latam lost one decade, Peru lost three decades

Note: LAC6 is the simple average of real GDP per capita Argentina, Brazil, Chile, Colombia, Mexico and Venezuela Source: WDI. Own calculations

This paper

- Describe Peru's Great Depression.
 - Hypotheses about the deep collapse and slow recovery

This paper

- Describe Peru's Great Depression.
 - Hypotheses about the deep collapse and slow recovery
- Very hard to find a **single** factor.

This paper

- Describe Peru's Great Depression.
 - Hypotheses about the deep collapse and slow recovery
- Very hard to find a single factor.
- 1980s **external shocks** were amplified by domestic features of the economy:
 - A weak and fractionalized political system
 - Lack of a coherent industrial policy
 - Limited domestic entrepreneurial capacity
- All these undermined the ability to develop new economic activities

Related literature

Economic crises

Calvo et. al (2006), Cerra and Saxena (2007), Kehoe and Prescott (2007)...

Economic Growth in Peru

■ Torp and Bertram (1978), Beltran and Seminario (1998), Carranza et. al. (2005), ...

Bad luck versus bad policies in EM

■ Calvo (2005), Rodrik (1999)...

Finance and economic activity

■ Levin (2004), Rajan and Zingales (1998)...

Labor market rigidities and economic activity

■ Hopenhayn and Rogerson (1993), Saavedra and Torero (2004)...

Exports and economy activity

■ Hausmann and Rodrik (2003), Hausmann et. al. (2005), Hausmann and Klinger (2006)...

Roadmap

- 1 Peru's lost three decades
- 2 Trying to Explain Peru's Growth Performance
- 3 Obstacle to Manufacturing Growth: A Sector-Level Analysis

Lost 3 decades

Peru's lost three decades

Peru's unusually large recession followed by an unusually slow recovery.. Details

- Growth contractions in GDP per capita data 1965-2005: 782 episodes.
 - Peru stand out by its unusually large collapse and lenghtly recovery
 - It also stands out by its large output cost

Trying to Explain Peru's Growth Performance

■ What can explain Peru's dismal growth performance?

Trying to Explain Peru's Growth Performance

- What can explain Peru's dismal growth performance?
- **Initial conditions**: very **vulnerable** prior to the 1980s (Torp and Bertram 1978)
 - Post pacific war: GDP per capita grew 1 percent on average
 - Geographical fragmentation
 - lacktriangle Resource led economy ightarrow possible RER overvaluation (Dutch disease)
 - Unsuccessful and isolationist policies (e.g. 1959 industrial promotion law)
 - Income inequality → political fragmentation

External shocks (bad luck)

- 1980s Peru's **perfect storm**: mutual reinforcing negative effects
 - (i) external shocks (ii) political instability, (iii) inability to develop new activities
- **External shocks**: key role in **igniting** Peruvian growth collapse in the 1980s
 - Real shocks (terms of trade shocks) and financials (sudden stops)
- External shocks cannot fully explain the depth of the collapses
 - Other countries received the same large negative external shocks in the 1980s
 - Unusually large collapse even after conditioning by external shocks.
 ▶ Details

Bad policies

- Bad policies reinforced the effect of external shocks
 - Large external shocks would have required a set of unpopular adjustment policies
 - But political fragmentation did not allow reaching the national consensus
- - Mismanagemente of fiscal and monetary policies
 - Unpredictable policy swings

Bad policies

- Bad policies reinforced the effect of external shocks
 - Large external shocks would have required a set of unpopular adjustment policies
 - But political fragmentation did not allow reaching the national consensus
- - Mismanagemente of fiscal and monetary policies
 - Unpredictable policy swings
- Vicious feedback between low growth and policy instability (Rodrik 1999)
 - However, difficult to establish causality (endogeneity)
 - Moreover, other Latin American countries suffered from the same problems

Obstacles to Manufacturing Growth

- Third element : inability to develop new industries
- Sector-level analysis
 - UNIDO value-added data from 1974-1996
 - Latinamerica and Asia (similar initial conditions in the 1970s)
- Peruvian industries grew slower than Latam and Asia. Details

- We explore three possible answers:
 - (i) Lack of financing; (ii) Labor rigidities; (iii) Lack of export capacity.

- We explore three possible answers:
 - (i) Lack of financing; (ii) Labor rigidities; (iii) Lack of export capacity.
- Econometric specification:

$$VAGR_{i,j,t} = \alpha_{i,t} + X_{(i),j} \left[\beta + \gamma LAC_i + \rho PERU_i\right] + \epsilon_{i,j,t}$$

- VAGR: value added growth in country i, sector j and period t
- $X_{(i),j}$: characteristic of sector j (possibly i-varying)
- LAC: dummy for countries/sectors in Latin America (LAC6, OT)
- PERU: dummy for sectors in Peru

- We explore three possible answers:
 - (i) Lack of financing; (ii) Labor rigidities; (iii) Lack of export capacity.
- Econometric specification:

$$VAGR_{i,j,t} = \alpha_{i,t} + X_{(i),j} \left[\beta + \gamma LAC_i + \rho PERU_i\right] + \epsilon_{i,j,t}$$

- VAGR: value added growth in country i, sector j and period t
- $X_{(i),j}$: characteristic of sector j (possibly i-varying)
- LAC: dummy for countries/sectors in Latin America (LAC6, OT)
- PERU: dummy for sectors in Peru
- $m{\beta} > 0$ Asian sectors with higher $X_{j,(t)}$ grew faster than other Asian sectors

- We explore three possible answers:
 - (i) Lack of financing; (ii) Labor rigidities; (iii) Lack of export capacity.
- Econometric specification:

$$VAGR_{i,j,t} = \alpha_{i,t} + X_{(i),j} \left[\beta + \gamma LAC_i + \rho PERU_i\right] + \epsilon_{i,j,t}$$

- VAGR: value added growth in country i, sector j and period t
- $X_{(i),j}$: characteristic of sector j (possibly i-varying)
- LAC: dummy for countries/sectors in Latin America (LAC6, OT)
- PERU: dummy for sectors in Peru
- $m{\beta} > 0$ Asian sectors with higher $X_{i,(t)}$ grew faster than other Asian sectors
- $ightharpoonup \gamma > 0$ Latam sectors with higher $X_{i,(t)}$ grew faster than similar Asian sectors

- We explore three possible answers:
 - (i) Lack of financing; (ii) Labor rigidities; (iii) Lack of export capacity.
- Econometric specification:

$$VAGR_{i,j,t} = \alpha_{i,t} + X_{(i),j} \left[\beta + \gamma LAC_i + \rho PERU_i\right] + \epsilon_{i,j,t}$$

- VAGR: value added growth in country i, sector j and period t
- $X_{(i),j}$: characteristic of sector j (possibly i-varying)
- LAC: dummy for countries/sectors in Latin America (LAC6, OT)
- PERU: dummy for sectors in Peru
- $m{\beta} > 0$ Asian sectors with higher $X_{i,(t)}$ grew faster than other Asian sectors
- lacksquare $\gamma>0$ Latam sectors with higher $X_{i,(t)}$ grew faster than similar Asian sectors
- ho>0 Peruvian sectors with higher $X_{i,(t)}$ grew faster than similar Asian sectors

Lack of Financing

- Causal relationship going from access to finance to growth (Levine 2004).
 - Plausible factor since peruvian credit market is extremely small
 - **Z** X_i : Rajan and Zingales (1998) sector j demand for external finance (EXFIN)

Table 7: Growth and Finance

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
EXFIN	0.015	0.022	0.014	0.013	0.015	0.022	0.014	0.013
	(3.91)***	(2.13)**	(3.65)***	(2.45)**	(3.91)***	(2.13)**	(3.65)***	(2.45)**
EXFIN*LAC	-0.011	-0.028	-0.005	-0.014				
	(2.27)**	(1.90)*	(0.85)	(1.63)				
EXFIN*PER	0.010	0.075	0.018	-0.020	-0.000	0.047	0.013	-0.034
	(3.63)***	(7.20)***	(4.03)***	(3.20)***	(0.11)	(4.47)***	(3.28)***	(6.27)***
EXFIN*OT					-0.009	-0.029	-0.003	-0.012
					(1.46)	(1.79)*	(0.32)	(0.92)
EXFIN*LA6					-0.012	-0.027	-0.007	-0.015
					(2.64)**	(1.30)	(1.41)	(1.85)*
Observations	9987	2524	4355	3108	9987	2524	4355	3108
N. of cy	396	104	169	123	396	104	169	123
Period	1974-	1974-	1980-	1990-	1974-	1974-	1980-	1990-
	1996	1979	1989	1996	1996	1979	1989	1996

Robust t statistics in parentheses. Standard errors are clustered at the country-year level. All regressions include country-year fixed effects. * significant at 10%; ** significant at 5%; *** significant at 1%

<u>Labor market frictions</u>

- Labor laws (1970s and 1980s) made the Peruvian labor market extremely rigid.
- "Most restrictive, protectionist and cumbersome" Saavedra and Torero (2004)
 - **X**_{i,j}: Sector j labor intensity in country i, i.e. $LI_{i,j} \equiv \frac{1}{22} \sum_t \frac{VA_{i,j,t}}{EMP_{i,j,t}}$

Table 8: Growth and Labor Intensity

	(1)	(2)	(3)	(4)	(3)	(0)	(7)	(4
LI	0.007	-0.021	0.015	0.018	0.007	-0.021	0.015	0.0
	(1.10)	(2.23)**	(1.89)*	(1.99)*	(1.10)	(2.23)**	(1.89)*	(1.9
LI*LAC	-0.002	0.026	-0.004	-0.021				
	(0.22)	(2.38)**	(0.40)	(1.84)*				
LI*PER	-0.011	0.037	-0.038	-0.012	-0.013	0.063	-0.041	-0.0
	(4.09)***	(7.10)***	(9.10)***	(1.56)	(2.04)*	(6.63)***	(5.10)***	(3.75
LI*OT					-0.005	0.021	-0.004	-0.0
					(0.73)	(1.87)*	(0.41)	(2.1
LI*LA6					0.006	0.040	-0.004	-0.0
					(0.64)	(3.38)***	(0.29)	(0.
Observations	13068	3441	5886	3741	13068	3441	5886	37
N. of cy	533	142	237	154	533	142	237	1:
Period	1974-1996	1974-1979	1980-1989	1990-1996	1974-1996	1974-1979	1980-	19
							1989	19

Robust t statistics in parentheses. Standard errors are clustered at the country-year level. All regressions include country-year fixed effects. * significant at 10%; ** significant at 15%; *** significant at 19%

Explanations Industry-level

Export capacity

- Exports as a source of growth (e.g. several East Asian economies)
- Isolationist policies (Velasco), possible Dutch disease, non-selective policy
 - **I** X_i : Borensztein and Panizza (2006) sector j export orientation (EXPOU)

Table 9: Growth and Export Orientation

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
EXPOU	0.002	0.016	-0.005	0.000	0.002	0.016	-0.005	0.000
	(0.36)	(1.30)	(0.65)	(0.02)	(0.36)	(1.30)	(0.65)	(0.02)
EXPOU*LAC	0.001	0.016	-0.005	0.004				
	(0.08)	(0.67)	(0.51)	(0.25)				
EXPOU*PER	-0.038	0.084	-0.107	-0.040	-0.038	0.100	-0.112	-0.036
	(5.47)***	(0.90)	(13.05)***	(5.95)***	(5.51)***	(8.15)***	(16.14)***	(2.42)**
EXPOU *OT					-0.003	0.021	-0.015	0.005
					(0.28)	(1.00)	(1.27)	(0.28)
EXPOU					0.007	0.008	0.014	0.003
*LA6								
					(0.38)	(0.15)	(0.78)	(0.15)
Observations	11785	2905	5303	3577	11785	2905	5303	3577
N. of cy	449	112	201	136	449	112	201	136
Period	1974-	1974-	1980-1989	1990-	1974-	1974-	1980-1989	1990-
	1996	1979		1996	1996	1979		1996

Robust t statistics in parentheses. Standard errors are clustered at the country-year level. All regressions include country-year

fixed effects. * significant at 10%; ** significant at 5%; *** significant at 1%

But, what type of exports?

- Not all types of exports have the same effect on growth
 - Countries that export the same type of goods which are exported by AE tend to grow faster, Hausmann et al. (2005)
 - Peru ranks below LAC and Asia. Details
 - X_j : sector j EXPOU in an advanced economy

Table 10: Growth and Export Orientation of Advanced Economies

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
EXPIND	0.009	0.025	0.002	0.007	0.009	0.025	0.002	0.007
	(2.28)**	(2.67)**	(0.42)	(0.90)	(2.28)**	(2.67)**	(0.42)	(0.90)
EXPIND*LAC	-0.013	-0.030	-0.000	-0.018				
	(2.46)**	(2.50)**	(0.01)	(1.93)*				
EXPIND*PER	-0.009	-0.018	0.003	-0.025	-0.021	-0.048	0.003	-0.043
	(2.68)**	(2.46)**	(0.75)	(5.16)***	(5.20)***	(5.03)***	(0.56)	(5.32)***
EXPIND*OTH					-0.014	-0.027	-0.004	-0.020
					(2.29)**	(2.22)**	(0.58)	(1.80)*
EXPIND*LA6					-0.011	-0.040	0.007	-0.016
					(1.89)*	(1.95)*	(1.13)	(1.67)
Observations	13872	3737	6180	3955	13872	3737	6180	3955
Number of cy	546	148	239	159	546	148	239	159
Period	1974-	1974-	1980-	1990-	1974-	1974-	1980-	1990-
	1996	1979	1989	1996	1996	1979	1989	1996

Robust t statistics in parentheses. Standard errors are clustered at the country-year level. All regressions include country-year fixed effects. * significant at 10%; ** significant at 5%; *** significant at 11%

Putting things together

- Horserace regression
 - Lack of access to finance : not an important obstacle
 - Worst-performing: sectors with higher labor intensity and in which AE have a comparative advantage.

Table 11: Horserace Regressions

	(1)	(2)	(3)	(4)
EXFIN*PER	0.011	0.010	0.002	0.002
	(2.63)**	(2.29)**	(0.73)	(0.91)
EXPIND*PER	-0.017	-0.015	-0.031	-0.033
	(3.70)***	(3.83)***	(6.89)***	(9.08)***
LI*PER	-0.013	-0.012	-0.018	-0.015
	(3.65)***	(2.66)**	(2.38)**	(1.92)*
EXPOU*PER		-0.009		0.000
		(0.79)		(0.04)
Constant	0.129	0.136	0.128	0.135
	(339.23)***	(48.05)***	(153.96)***	(40.87)***
Other regressors	LAC	LAC	LAC6, OTH	LAC6, OTH
Observations	9502	8815	9502	8815
Number of cy	396	355	396	355
Period	1974-1996	1974-1996	1974-1996	1974-1996

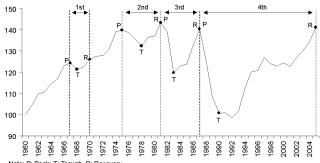
Robust t statistics in parentheses. Standard errors are clustered at the country-year level. All regressions include country-year fixed effects. * significant at 10%; ** significant at 5%; *** significant at 1%

The role of good specificity

- Why did Peru not develop industries in which AE have a comparative advantage?
 - Traditional answer from trade theory: lack of endowment to be competitive.
- Hausmann and Klinger (2006): good specificity
 - Measure the degree of specificity (inputs and know-how) across types of goods.
 - lacktriangle High specificity (e.g. extractive) ightarrow cannot easily diversify into other products
 - lacksquare Low specificity (e.g. high tech) ightarrow can easily diversify into other products

Final remarks

- lacktriangle Peru's great depression was an extraordinary event ightarrow three decade lost
- The elements of a perfect storm
 - Bad initial conditions
 - Ignited by external shocks and amplied by a fragile political system
 - Slow recovery: labor market rigidities and inability to develop new products
 - Vicious cycle of low growth and political misguidance/instability (Rodrik 1999)


Related literature

■ Thorp and Bertram's (1978) interpretation of Peru's growth experience:

"...local capacity to **innovate and adapt technology**; endogenous as distinct from external sources of economic dynamism; and policies which foster integrated growth...might have permitted the economy to survive the periodic **breakdown of the export mechanism** without high cost in terms of growth....It would also have prepared the economy more successfully to tackle the increasingly large scale and more complex investment projects required to sustain growth in the export sector." (Thorp and Bertram, 1978, pp 321-322)

Growth contractions

Note: P: Peak; T: Trough, R: Recovery

Source: WDI. Own calculations

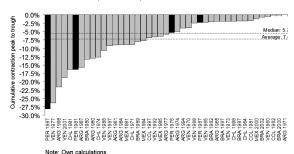
Growth contractions

Table 1: Output contractions in Peru

No. Episode	Peak	Trough	Recovery	Cumulative Output Contractions	Average Rate of Recovery	Number of years for ful recovery
1 st	1967	1968	1970	-2.40%	1.99%	2
2^{nd}	1975	1978	1981	-5.40%	2.67%	3
$3^{\rm rd}$	1981	1983	1987	-16.41%	4.06%	4
4 th	1987	1990	2005	-28.23%	2.27%	15

Table 2: Cumulative output contractions

	Mean	median	St dev	min	max	N.Obs
All Countries	-8.97%	-5.13%	11.69%	-92.89%	-0.02%	782
LAC	-7.65%	-4.54%	8.61%	-37.65%	-0.05%	155
Sub-Saharan Africa	-9.67%	-6.67%	10.71%	-92.89%	-0.11%	263
East Asia & Pacific	-9.32%	-6.02%	10.73%	-70.06%	-0.20%	68
South Asia	-3.65%	-2.65%	4.29%	-22.50%	-0.32%	28
Europe & Central Asia	-23.17%	-12.65%	22.15%	-76.86%	-0.16%	48
Middle East North	-10.29%	-4.92%	13.02%	-58.16%	-0.13%	57
OECD	-2.39%	-1.52%	2.67%	-13.19%	-0.02%	94
Non-OECD High	-9.14%	-6.16%	11.39%	-52.08%	-0.03%	69



Industry-level

Growth contractions

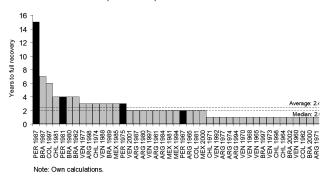
Figure 3: Cumulative Contraction peak to trough Episodes of Output Contraction in LAC 7

Growth contractions

Table 1: Output contractions in Peru

No. Episo		Trough	Recovery	Cumulative Output Contractions	Average Rate of Recovery	Number of years for full recovery
1st	1967	1968	1970	-2.40%	1.99%	2
2 nd	1975	1978	1981	-5.40%	2.67%	3
3 rd	1981	1983	1987	-16.41%	4.06%	4
4 th	1987	1990	2005	-28.23%	2.27%	15

Table 3: Number of years for full recovery


	mean	median	St dev	min	max	N.Obs
All Countries	2.5	1.0	2.7	1.0	23.0	782
LAC	2.8	2.0	3.5	1.0	23.0	155
Sub-Saharan Africa	2.6	2.0	2.7	1.0	21.0	263
East Asia & Pacific	2.5	2.0	2.3	1.0	14.0	68
South Asia	1.6	1.0	0.9	1.0	4.0	28
Europe & Central Asia	4.2	3.0	3.5	1.0	11.0	48
Middle East North Africa	2.3	1.0	2.6	1.0	14.0	57
OECD	1.7	1.0	1.5	1.0	9.0	94
Other High Income countries	2.0	1.0	1.5	1.0	8.0	69

▶ back

Growth contractions

Figure 4: Years to full recovery

Episodes of Output Contraction in LAC 7

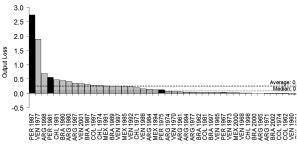
→ back

Growth contractions

Output cost measure: $OL = \sum_{i=1}^{T} rac{Y_p - Y_i}{Y_p}$

Figure 6: Output Loss

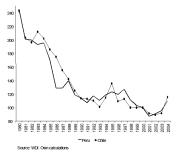
GDP per capita, 1960=100


Note: The grey area shows the output loss associated to the 1987 growth collapse

Growth contractions

Figure 7: Output Losses in LAC 7

Episodes of Output Contraction in LAC 7

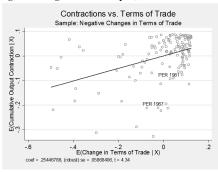

Note: Own calculations.

Industry-level

External shocks

Figure 9: Terms of trade

Terms of Trade (2000=100)



Note: Primary exports as a share of Total Exports is proxied by the sum of agricultural raw exports, fuel and metal and ores exports over merchandise and commercial service exports. Source: WDL Own calculations

- Peru + Chile

External shocks

Figure 11: Regression Scatterplot, all countries

▶ back

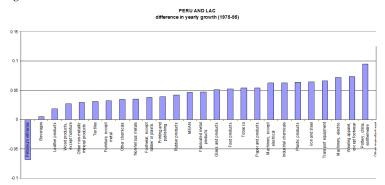
Bad policies

Figure 12: Fiscal Policy

Note: LAC is the simple average of Central Government Balance (% GDP) Argentina, Colombia, Ecuador Uruguay and Venezuela

Source: The Institute of International Finance. Own calculations

Figure 14: GDP and Chronology of Governments


Note: PU: Prado y Ugarteche; JM: Junta Militar Godoy-Lindey; P: Paniagua

Industry-level analysis

Figure 16

▶ back

Industry-level analysis

Figure 17

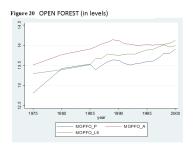
▶ back

Income level of a country's exports

Figure 18 EXPY (in levels)

MEXPY L6

MEXPY A


- MEXPY P

EXPY residuals after controlling by income
Figure 19 per capita

To a series of the se

Open forest

OPEN FOREST residuals after controlling by income per capita

OPEN FOREST residuals after controlling by income per capita

OPEN FOREST residuals after controlling by income per capita

OPEN FOREST residuals after controlling by income per capita

OPEN FOREST residuals after controlling by income per capita

OPEN FOREST residuals after controlling by income per capita

OPEN FOREST residuals after controlling by income per capita

OPEN FOREST residuals after controlling by income per capita

OPEN FOREST residuals after controlling by income per capita

OPEN FOREST residuals after controlling by income per capita

OPEN FOREST residuals after controlling by income per capita

OPEN FOREST residuals after controlling by income per capita

OPEN FOREST residuals after controlling by income per capita

OPEN FOREST residuals after controlling by income per capita

OPEN FOREST residuals after controlling by income per capita

OPEN FOREST residuals after controlling by income per capita

OPEN FOREST residuals after controlling by income per capita

OPEN FOREST residuals after controlling by income per capita

OPEN FOREST residuals after controlling by income per capita

OPEN FOREST residuals after controlling by income per capita

OPEN FOREST residuals after controlling by income per capital after controlling by inc

▶ back